Stimuli-responsive Compounds as Emerging Anticancer and Cell Imaging Agents

Deepti U. Kirtani and Anupa A. Kumbhar

Department of Chemistry, Savitribai Phule Pune University, Ganeshkhind Road, Pune-411007, India.
Email: anupa.kumbhar@unipune.ac.in

Received: March 24, 2023 | Accepted: June 06, 2023 | Published online: July 31, 2023

Abstract

Discovery of cisplatin furthered the development of many platinum and non-platinum drugs for anticancer and cell imaging applications. However, non-selective nature of these drugs exert toxicity to both, cancer and normal cells. This review focuses on use of external stimuli viz. UV-light and enzyme nitroreductase to release the drugs specifically in cancer cells to exert anticancer activity as well as release a fluorophore for imaging hypoxic cells.

Keywords: Anticancer agents, imaging agents, nitroreductase, photoactive, stimulus-responsive

1. Introduction

Cancer is one of the second most fatal diseases responsible for 21 to 25% annual deaths globally.1,2 It is mainly characterized by uncontrolled growth of abnormal cells with an ability to spread all over the body leading to metastasis.2 As shown in the Figure 1, during the normal cell proliferation if the cell is damaged or defected then the cell either repairs itself or dies by the mechanism called apoptosis.3 In contrast, if the abnormal cell continues to grow it develops into a tumor.4 Tumors cells have low levels of oxygen (1% to 2% of O2) than normal cells.5–10 These cells are aggressive and adapt to cellular environmental stress, escape apoptosis and survive.11,12 This leads to genetic instability, malignant progression in cells and resistance to therapy.7,13–15

Metals and metal complexes have been used in various medical applications from thousands of years.16,17 In metal-based drugs, central metal ion is the key feature for the mechanism of action.18 Inorganic metal complexes due to their variety of coordination sphere, oxidation states, ligand design, and redox states alter the responsiveness of the compounds towards biological activity.18 In the early 1900’s potassium dicyanoaurate and antimony were used to treat tuberculosis and leishmaniasis respectively.17 In addition, gold salts and arsenic compounds were used for treating bacterial infections.17 Cis-diaminedichloroplatinum(II) (cisplatin, 1) was first synthesized by Michele Peyrone in 19th century and by 20th century the accidental discovery of cisplatin for anticancer property by Barnette Rosenberg led a corner stone for treatment of cancer.17,18 Cisplatin was found to be effective in the treatment of variety of cancers such as testicular, ovarian, colorectal, bladder, non-small cell lung and head and neck cancers.17,18 Being an effective anticancer drug it also came with lot of drawbacks such as dose-limiting toxicity, intrinsic tumor resistance, nausea, vomiting, toxicity towards normal cells including neurotoxicity, ototoxicity and nephrotoxicity.20,22,23 These limitations prompted the development of new platinum drugs with chemotherapeutic properties in treatment of cancer.21

To improve the efficacy, second (changing the leaving group) and third (changing the amines) generation cisplatin analogues were synthesized by modifying the coordination environment around the platinum centre.24,25 Carboplatin26 and nedaplatin19,27 were the second generation platinum based drugs. Carboplatin was developed to improve dose-limiting toxicity of cisplatin. Major drawback of carboplatin myelosuppression and limited efficacy for most of the cancers was noted.28 Nedaplatin exhibited improved pharmacokinetic properties with reduced nephrotoxicity. It has been approved in Japan for the treatment of esophageal, neck, head, small cell and non-small cell lung cancers.29 However, side-effects like dose-limiting toxicity,
myelosuppression and abnormal functioning of renal system was observed.20

Oxaliplatin, lobaplatin and heptaplatin are the third generation of cisplatin analogues.18,29 Oxaliplatin is approved to treat the colorectal cancer worldwide.30 Lobaplatin and heptaplatin have received regional acceptance in China and Korea.51 Lobaplatin does not induce renal-, neuro- or ototoxicity, however, it triggered anemia and leukopenia.32–36 Lobaplatin is currently used in the treatment of chronic myelogenous leukemia, metastatic breast cancer and small cell lung cancer.37 Heptaplatin is used in the treatment of gastric cancers, and shows severe nausea, hepatotoxicity and nephrotoxicity.38–40 The toxic side effects such as neutropenia, emesis and proteinuria were found to be lowered when heptaplatin was used for the treatment.51 There are few platinum-based drugs which recently entered clinical trials.

In picoplatin, pyridine ring was introduced to create steric hindrance to prevent the attack of nucleophiles, mainly thiols.42,43 Although picoplatin was useful on resistant cell lines without nephrotoxicity, it was withdrawn from phase II clinical trials as it was found to be ineffective in curbing the disease progression especially in non-small cell lung cancer and small cell lung cancers.44–46 Picoplatin is currently undergoing phase I and phase II clinical trials on colorectal cancer in combination with 5-fluorouracil and leucovorin, and prostate cancer in combination with docetaxel.47 Satraplatin was found effective against cisplatin-resistant cancers including human lung, ovary, cervix and prostate cancer. Clinical trials revealed that it was effective against the patients with refractory cancer, prostate cancer and squamous cell carcinoma of the head and neck.50,51 However, satraplatin was rejected by FDA as it showed less convincing results in terms of overall survival of patients.51 LA12 is the analogue of satraplatin.52,53 It showed higher uptake in cisplatin-resistant cell lines and recently completed phase I trial.48,54 ProLindac55–59 is a combination of active oxaliplatin conjugated with hydrophilic biocompatible polymer, hydroxypropylmethacrylamide. This drug targets solid tumors with increased permeability and retention effect. In-vitro studies of ProLindac revealed 20 times higher platinum-adducts at pH 3.0 than pH 7.4. This explains the enhanced activity of ProLindac on hypoxic tumors as they have low extracellular pH. In phase I studies, ProLindac showed antiproliferative activity on metastatic melanoma and in advanced ovarian cancer patients.60 This drug is in phase II clinical trial for treatment of ovarian cancer.56 Figure 2 summarizes the strategies used in the development of second and third generation platinum-based drugs.61

Although these platinum complexes were showing anticancer properties on various cancer cell lines and tumors, they suffered from many limitations with severe side-effects, poor selectivity and development of resistance. Cisplatin and other platinum-based drugs covalently bind to DNA (Figure 3), mostly to guanine and adenosine nucleobases. This leads to inhibition of DNA synthesis and ultimately cell death.62,63 The shortcomings of platinum drugs eventually restricted their use in the treatment of cancer. These unresolved problems of platinum anticancer drugs stimulated efforts to develop non-platinum based antineoplastic agents.

Figure 2. Flow chart of development of platinum based anticancer drugs (Green arrow indicates advantage and red arrow shows disadvantage). Adapted from reference.61

Figure 3. Mechanism of anticancer activity of platinum complexes. Adapted from reference.62,63

1.1 Non-platinum based anti-proliferative drugs

Metal-based anticancer compounds other than platinum were also been demonstrated as promising anticancer drugs. In addition, interest in developing more non-platinum based chemotherapeutics has increased as some of them have shown ability in treating variety of cancer strains with fewer side effects. Non-platinum transition metal complexes have advantages like variable oxidation states, tuning of redox potentials, electronic and physiochemical properties based on ligand scaffold, charge on the complex and geometry. This makes them active candidates in the field of medicinal chemistry for the treatment of cancer.64,65

Transition-metals such as copper, iron, zinc and manganese are present at the active sites of proteins and enzymes and play an important role in biological processes like electron transfer and catalysis.66 Reactive oxygen species (ROS) are generally unstable, highly reactive and partially reduced oxygen species which are byproducts of metabolic processes.67,68 It has been noted that ROS can be either tumor-supporting or tumor-suppressing agents.69 Most of the

https://doi.org/10.53023/p.rasayan-20230606

Prayogik Rasayan 2023, 07, 29–60

chemotherapeutics that generate ROS can trigger the cell death and are considered tumor suppressors. The redox properties of both ligand and metal ions in transition-metal complexes offer routes for redox activation in hypoxic environment of tumor cells (Figure 4). Among the transition metal ions, copper and iron are well known for their redox active nature. Both produce ROS via Fenton-like reaction to generate oxidative stress and promote cell death. So far, not a single non-platinum drug is approved for cancer therapy providing a great opportunity for continuous development of new drug molecules. Some non-platinum complexes of ruthenium(II), titanium(IV), gallium(III), cobalt(II/III), iron(II/III), copper(I/II), gold(I/III) etc. have displayed promising results in preclinical and clinical trials (Figure 5) and only those are discussed below.

Figure 4. Overview of mechanism of anticancer activity of non-platinum complexes via generation of ROS. Adapted from reference 68.

![Chemical structures of non-platinum complexes](image-url)
Titanium complex, budotitane [(bzac)$_2$Ti(OEt)$_2$], 1 where bzac= 1-phenylbutane-1,3-diketonate was the first non-platinum drug which entered clinical trials. It failed in preclinical trials due to lack of solubility in water and hydrolytic instability under physiological conditions.

Manganese is used as a cofactor in several biological processes including proteins and enzymes. Avasopasem ((2,6,8,11-tetraaza-4(2,6)-pyridina-1,7(1,2)-dicyclohexanocycloundecaphane, 2) and MnTE-2-PyP (H_2) 2,2',2''-((4Z,6E,15E; 19E)-1H,2H,3H,9H,10H,20H-porphyrin-5,10,15,20-tetrayl) tetrakis(1-ethylpyridin-1-ium) manganese(II), 3) are Mn-based complexes that reached clinical trials for treatment of head and neck cancer, which are SOD mimics and are potentially toxic to cancer cells.

Iron is essential in many biological processes including DNA synthesis, cell proliferation and growth. It is also present in hemoglobin, leghemoglobin and myoglobin. Iron mainly exists in two main ferrous (II) and ferric (III). The change in oxidisation states from Fe(II) to Fe(III) can produce ROS which are potentially toxic to cancer cells.

Iron mainly exists in two main ferrous (II) and ferric (III). The change in oxidisation states from Fe(II) to Fe(III) can produce ROS which are potentially toxic to cancer cells.

Iron is essential in many biological processes including DNA synthesis, cell proliferation and growth. It is also present in hemoglobin, leghemoglobin and myoglobin. Iron mainly exists in two main ferrous (II) and ferric (III). The change in oxidisation states from Fe(II) to Fe(III) can produce ROS which are potentially toxic to cancer cells.

Iron is essential in many biological processes including DNA synthesis, cell proliferation and growth. It is also present in hemoglobin, leghemoglobin and myoglobin. Iron mainly exists in two main ferrous (II) and ferric (III). The change in oxidisation states from Fe(II) to Fe(III) can produce ROS which are potentially toxic to cancer cells.

Iron is essential in many biological processes including DNA synthesis, cell proliferation and growth. It is also present in hemoglobin, leghemoglobin and myoglobin. Iron mainly exists in two main ferrous (II) and ferric (III). The change in oxidisation states from Fe(II) to Fe(III) can produce ROS which are potentially toxic to cancer cells.

Iron is essential in many biological processes including DNA synthesis, cell proliferation and growth. It is also present in hemoglobin, leghemoglobin and myoglobin. Iron mainly exists in two main ferrous (II) and ferric (III). The change in oxidisation states from Fe(II) to Fe(III) can produce ROS which are potentially toxic to cancer cells.

Iron is essential in many biological processes including DNA synthesis, cell proliferation and growth. It is also present in hemoglobin, leghemoglobin and myoglobin. Iron mainly exists in two main ferrous (II) and ferric (III). The change in oxidisation states from Fe(II) to Fe(III) can produce ROS which are potentially toxic to cancer cells.
Copper is an essential element required for biological processes in living organisms.²⁶ It is more toxic to cancer cells as compared to normal cells.¹⁰⁶ Copper complexes exhibit antitumor activity by generating ROS leading to ROS-mediated autophagy and apoptosis.¹⁰⁶ Cu(II) elscelomol (N⁴, N⁴⁺-dimethyl-N⁶, N⁶⁺-di(phenylcarboxamido) malonohydrazide) Cu(II),¹⁰⁷⁻¹⁰⁹ was the first complex to enter the clinical trials to treat acute myeloid leukemia. This drug was in phase II clinical trials for ovarian, fallopian and peritoneal cancers in phase II clinical trials. It acts by inducing DNA strand scission mediated by ROS in malignant cells. Casiopeina Ilía ((4,7-dimethyl-1, 10-phenanthroline) ((Z)-4-hydroxypent-3-en-2-one) Cu(II) nitrate,¹⁷)¹⁰ is also a copper(II) complex entered in phase I clinical trial as a putative agent for the treatment of acute myeloid leukemia. The mechanism of action involves DNA cleavage caused by ROS. Casiopeina II-Gly ((Z)-4-hydroxypent-3-en-2-one) glycine copper(II) nitrate,¹⁸) also entered the clinical trials and was shown to block the migration and proliferation of HeLa cells.

Gallium is less toxic and has an ability to inhibit DNA synthesis. The anticancer property of gallium salts were discovered in 1971.¹¹² Gallium nitrate,¹⁹ was the first gallium compound to enter phase II clinical trials.¹¹³,¹¹⁴ It showed antiproliferative activity against chronic lymphocytic leukemia, breast, bladder, renal, melanoma, prostate, lung, ovarian, and cervical cancers. However, patients treated with this drug showed partial response towards treatment. The next two generations of gallium compounds are gallium maltolate,²⁰ and tris(8-quinolato) gallium (III), KP46.²¹,¹²,¹³ Preclinical investigation of gallium maltolate showed activity against hepatoma, lymphoma and bladder cancers.²¹ is currently in clinical trials as an oral gallium compound that exhibited inhibition of solid tumors like renal, ovarian, stomach and parotid gland.

Ruthenium (III) complexes were found to be less toxic, more selective towards cancer cells and possess antimetastatic activity.²⁴ Among various ruthenium(II) complexes, imidazolium-trans tetrachloro (dimethylsulfoxide) imidazole ruthenium (III), (NAMI-A,²²) trans-[tetrachloro bis(1H-indazole) ruthenate(III)] (KP1019,²³) and [Ru(4, 4'-dimethyl-2, 2'-bipyridine)₂ (2-2', 2''- 5:2''-tertiophene)-imidazo[4, 5-f]]Cl₂ (TLD1433),²⁴ entered the clinical trials.²² displayed anti-angiogenic and anti-metastatic properties whereas ²³ showed DNA damage and apoptosis induced by oxidative stress.

Several gold(I) complexes showed antiproliferative activity, targeting mitochondrial DNA.¹¹⁷,¹¹⁸ Among them auranofin,²⁵ is in clinical trials for the treatment of leukaemia.¹¹⁹ Researchers have designed countless metal-based anticancer agents with diverse coordination geometries and ligand systems acting on different cellular targets and mechanism of action. To summarize the mechanism of action of non-platinum complexes, almost all those discussed above exert their anticancer activity, with DNA as the main target, by invoking oxidative stress. Apart from that, lipoperoxidation, disruption of mitochondrial membrane potential, inhibition of a particular growth phase in the cell cycle, etc. are other modes responsible for cell death.

Many strategies are adapted to minimize toxicity and increase the efficacy of metal-based therapeutics. To achieve target specificity, the complexes are (i) tagged with tumor specific peptides or monoclonal antibodies, (ii) modified to tune the redox potential so as to reach the hypoxic tumors, or (iii) subjected to different stimuli such as pH, radiation, enzymatic dissociation etc. for controlled release of metal ion or drug to the specific tissue. This review focuses on compounds that can act as antiproliferative and imaging agents by responding to external stimuli to exert their activity.

Tumor targeting strategies that respond to external stimulus can enhance their selectivity to the target.¹²⁰ Stimulus responsive drug delivery system can prevent premature release of active component and ensure stability in biological systems until the respective stimulus is applied at the cellular sites.¹²¹ Further, by tagging the stimulus responsive molecule with a fluorescent probe one can monitor the distribution and binding of drugs to biomolecules in living systems. Hence, fluorescence microscopy become an important tool in real-time imaging of live cells with high sensitivity and selectivity.¹²²,¹²³ Here we have focused on the o-nitrophenyl and p-nitrophenyl moieties which act as activators in presence of UV-light and nitroreductase enzyme to behave as anticancer and imaging agents respectively. The readers can also refer to the reviews published earlier on the photocaged and nitroreductase sensing molecules.¹²⁴⁻¹²⁶

2. Ortho-nitrophenyl groups as photolabile protecting groups

Light is a highly selective and ideal external trigger and harmless to biological systems if applied correctly.¹²⁷ Therefore, a large number of photoactive compounds were discovered and used in various applications in the past few decades.¹²⁸ They have received considerable attention for the controlled delivery of active components with the help of light.¹²⁹,¹³⁰ Photoactivated drugs¹³¹,¹³² are mostly employed in photodynamic therapy which uses photosensitive molecules and light of a specific wavelength as a trigger to release the drug molecules at a specific site.¹³³ A collection of such photolabile protecting groups is given in Figure 6. An ideal photoactive compound must possess greater stability under physiological conditions, efficient release and good aqueous solubility of photoproduc(s) and faster photocleavage kinetics.¹²⁷,¹³⁴

Among the various photoactive groups, o-nitrophenyl derivatives are most common because of their versatility, compatibility with various functional groups (phosphates, carboxylates, hydroxyl groups, amines and amides) and good light sensitivity.¹³⁵,¹³⁶ o-Nitrophenyl compounds absorbs between 300-360 nm for efficient photolysis.¹³⁷ The UVA range (315-400 nm) indirectly damages the DNA and other cellular components by formation of ROS in cellular

https://doi.org/10.53023/p.rasayan-20230606

Prayogik Rasayan 2023, 07, 29-60

Prayogik Rasayan
Therefore it is essential for efficient photolysis to decrease the light toxicity. Hence quantum efficiency and its extinction coefficient at the irradiation wavelength become the two defining properties of photolabile groups. Hence by increasing the photolysis efficiency, one can lower the exposure time.

Nitrobenzyl based photolabile protecting groups

![Nitrobenzyl based photolabile protecting groups](image)

2-Nitrobenzyl series 2-(2-Nitrophenyl) ethyl series

Carbonyl based photolabile protecting groups

![Carbonyl based photolabile protecting groups](image)

Phenacyl family

Photoenolaziation series

Enones and conjugate systems

Benzyl based photolabile protecting groups

![Benzyl based photolabile protecting groups](image)

Phenyl substituents

Polyaromatic systems

Benzylic substituents

Figure 6. Chemical structures of molecules with photolabile protecting groups.

Figure 7. Schematic presentation of photolysis mechanism of nitrobenzyl protected-ATP molecule.

Figure 8. Photochemistry of caged calcium complexes depicting release of Ca(II) ion on light activation.

Figure 9. Light activation uncaging of Cu(II) complex with low affinity for Cu(II).
Figure 10. Chemical structures of transition-metal caged complexes.
<table>
<thead>
<tr>
<th>Sr.No</th>
<th>Compound, chemical name</th>
<th>(\lambda_{\text{ex}})</th>
<th>(\lambda_{\text{em}})</th>
<th>Solvent</th>
<th>(K_d) (M)</th>
<th>(\phi_{\text{photolysis}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>30, Pyridine-2-carboxylic acid {1-(2-nitro-phenyl)-2-[(pyridine-2-ylmethyl)-carbamoyl] -ethyl]-amide) aqua copper(II) complex</td>
<td>580nm</td>
<td>NR</td>
<td>20mM NaH(_2)PO(_4) buffer pH 7.4</td>
<td>1.6 x 10(^{-11})</td>
<td>73%</td>
</tr>
<tr>
<td>2.</td>
<td>31, 2-Methyleneamino-but-2-enolic acid {2-[2-(1H-imidazol-4-yl)-ethylcarbamoyl] -1-(2-nitrophenyl)-ethyl]-amide) copper(II) complex</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>3.</td>
<td>32, 3-(2-Amino-acetylamino)-3-(2-nitro-phenyl)-N-pyridin-2-yilmethyl-propionamide copper(II) complex</td>
<td>NR</td>
<td>NR</td>
<td>Phosphate buffer pH 7.4</td>
<td>2 x 10(^{-16})</td>
<td>NA</td>
</tr>
<tr>
<td>4.</td>
<td>33, 3-[2-(2-pyridin-2-ylmethyl-amino)-acetylamino]-3-(2-nitrophenyl)-N-pyridin-2-yilmethyl-propionamide copper(II) complex</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>5.</td>
<td>34, Pyridine-2-carboxylic acid {2-(bis-pyridin-2-yilmethylcarbamoyl)-1-(2-nitrophenyl)-ethyl}-amide copper(II) complex</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>6.</td>
<td>35, 7,14-Bis-(2-nitro-phenyl)-1,4,8,11tetraaza-cyclo-tetracane-2,5,9,12-tetraone copper(II) complex</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>7.</td>
<td>36, (1-(4,5\text{-dimethoxy-2-nitrophenyl})-N,N'-dimethyl-N,N'-bispyridin-2-yilmethyl-ethane-1,2-diamine) copper(II) complex</td>
<td>NR</td>
<td>NR</td>
<td>Phosphate buffer pH 7.4</td>
<td>5 x 10(^{-17})</td>
<td>0.55%</td>
</tr>
<tr>
<td>8.</td>
<td>37, 2-(2-Nitro-phenyl)-N-pyridin-2-yilmethyl-2-[(pyridin-2-yilmethyl)-amino]-acetamide copper(II) complex</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>9.</td>
<td>38, Pyridine-2-carboxylic acid {1-(2-nitrophenyl)-3-[(pyridine-2-yilmethyl)-amino]-propyl]-amide) chloride copper(II) complex</td>
<td>584nm</td>
<td>NR</td>
<td>PBS buffer pH 7.4</td>
<td>2 x 10(^{-16})</td>
<td>66%</td>
</tr>
<tr>
<td>10.</td>
<td>39, 7-Diethylamino-2-oxo-2H-chromene-3-carboxylic acid {1-(2-nitro-phenyl)-2-[(pyridin-2-yilmethyl)-carbamoyl]-ethylcarbamoyl}-methyl-amide copper(II) complex</td>
<td>432nm</td>
<td>479nm</td>
<td>10mM HEPES buffer pH 7.4 10% DMSO</td>
<td>7.3 x 10(^{-8})</td>
<td>1.6%</td>
</tr>
<tr>
<td>11.</td>
<td>40, 2-(bis(2-ethylthio)ethyl)amino)-N-(3-(bis(2-ethylthio)ethyl)amino)-1-(4,5-dimethoxy-2-nitrophenyl)propylacetamide copper(II) complex</td>
<td>420nm</td>
<td>560nm</td>
<td>20mM HEPES buffer, 100mM KCl, 30% EtOH, pH 7.0</td>
<td>5.4 x 10(^{-11})</td>
<td>1.1%</td>
</tr>
<tr>
<td>12.</td>
<td>41, 4-(bis-pyridin-2-yilmethylamino)phenyl {4,5-dimethoxy-2-nitrophenyl} zinc(II) complex</td>
<td>350nm</td>
<td>NR</td>
<td>MeCN</td>
<td>9.7 x 10(^{-8})</td>
<td>0.3%</td>
</tr>
</tbody>
</table>

Table 1: Photophysical properties of photoactive metal complexes.
<table>
<thead>
<tr>
<th></th>
<th>Chemical Structure</th>
<th>Wavelengths</th>
<th>Buffer Details</th>
<th>Emission</th>
<th>Spectral Width</th>
<th>Emission</th>
<th>Absorption</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.</td>
<td>42. (4,5-Dimethoxy-2-nitrophenyl)-(4-{[(pyridine-2-yl)ethyl]pyridine-2-ylmethyl}amino)phenyl (II) complex</td>
<td>350nm</td>
<td>NR</td>
<td>MeCN</td>
<td>8.6 x 10^{-5}</td>
<td>0.4%</td>
<td>NR</td>
</tr>
<tr>
<td>14.</td>
<td>43. (4-Bis[(pyridine-2-yl)ethyl]amino)phenyl(4,5-dimethoxy-2-nitrophenyl) (II) complex</td>
<td>350nm</td>
<td>NR</td>
<td>EtOH</td>
<td>2.5 x 10^{-4}</td>
<td>1.8%</td>
<td>NR</td>
</tr>
<tr>
<td>15.</td>
<td>44. [4-(1-aza-15-crown-5)phenyl]-[(4,5-dimethoxy-2-nitrophenyl)]methanol (II) complex</td>
<td>347nm</td>
<td>NR</td>
<td>MeCN</td>
<td>1.61 x 10^{-4}</td>
<td>1.6%</td>
<td>NR</td>
</tr>
<tr>
<td>16.</td>
<td>45. 1-(4,5-dimethoxy-2-nitrophenyl)-N, N'-dimethyl-N, N'-bispyridin-2-ylmethyl-ethane-1, 2-diamine (II) complex</td>
<td>360nm 540nm</td>
<td>40mM HEPES buffer, 100mM KCl, pH 7.0</td>
<td>2.3 x 10^{-4}</td>
<td>0.55%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.</td>
<td>46. 1-(4, 5-dimethoxy-2-nitrophenyl)-N, N'-tetrakis-pyridin-2-ylmethyl-ethane-1, 2-diamine (II) complex</td>
<td>350nm 440nm</td>
<td>40mM HEPES buffer, 100mM KCl, pH 7.0</td>
<td>9 x 10^{-6}</td>
<td>2.3%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18.</td>
<td>47. [4-(bis-pyridin-2-ylmethylamino)phenyl]-[(4,5-dimethoxy-2-nitrophenyl)] (II) complex</td>
<td>270nm</td>
<td>NR</td>
<td>MeCN</td>
<td>1.2 x 10^{-6}</td>
<td>NR</td>
<td></td>
</tr>
<tr>
<td>19.</td>
<td>48. 2,2'-(carboxy(3-nitrophenyl)methyl) azanediyi (II) complex</td>
<td>274nm</td>
<td>NR</td>
<td>MeCN</td>
<td>1 x 10^{-13}</td>
<td>27%</td>
<td>0.0112</td>
</tr>
<tr>
<td>20.</td>
<td>49. 2,2'-(carboxy(3-nitrophenyl)methyl) azanediyi (II) complex</td>
<td>347nm 512nm</td>
<td>40mM HEPES buffer, 100mM KCl, 10% MeCN pH 7.5</td>
<td>8 x 10^{-13}</td>
<td>27%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21.</td>
<td>50. 4-(1-oxa-4,10-dithia-7-azacyclodecan-7-yl)phenyl(4, 5-dimethoxy-2-nitrophenyl)methanol (II) complex</td>
<td>350nm</td>
<td>NR</td>
<td>MeCN</td>
<td>0.007</td>
<td>NR</td>
<td></td>
</tr>
<tr>
<td>22.</td>
<td>51. (4-(Bis[(2-(Ethythio)ethyl)thio)ethyl]amino)phenyl(4,5-dimethoxy-2-nitrophenyl)methanol silver(I) complex</td>
<td>350nm</td>
<td>20mM HEPES buffer/ dioxane (1:1), pH 7.0</td>
<td>0.0114</td>
<td>0.92%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.</td>
<td>52. (4-(Bis[(2-(Ethythio)ethyl)thio)ethyl]amino)phenyl(4,5-dimethoxy-2-nitrophenyl)methanol copper(I) complex</td>
<td>350nm</td>
<td>20mM HEPES buffer/ dioxane (1:1), pH 7.0</td>
<td>0.0112</td>
<td>1.5%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24.</td>
<td>53. (4-(Bis[(2-(Ethythio)ethyl)thio)ethyl]amino)phenyl(4,5-dimethoxy-2-nitrophenyl)methanol mercury(II) complex</td>
<td>350nm</td>
<td>20 mM HEPES buffer/ dioxane (1:1), pH 7.0</td>
<td>0.007</td>
<td>NR</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Kaplan and his group first synthesized the light-activated ATP-caged molecule.139 The caged-ATP molecule 26 remains intact until the light of the specific wavelength falls on it to release free ATP molecule (Figure 7). Calcium plays an important role in controlling the neurosynaptic transmission, hormone secretion and muscle contraction.140 As shown in the Figure 8, the caged DM-nitrophen calcium complex ((1-(2-nitro-4, 5-dimethoxyphenyl)-N, N', N'-tetrais [(oxycarbonyl)methyl]-1, 2-ethanediamine, 27) was able to release the Ca(II) ion upon photo-irradiation. These calcium caged complexes were further used in various biological applications including muscle contraction and neurobiology.141,142 Later the next calcium caged complexes were designed to increase the photolysis efficiency.143 The carboxylate rich chelator 27 was also used on other alkali metals like Sr(II), Ba(II), Mg(II) etc.138 This concept of metal ion release is effective for many biological applications. The concept of calcium caged complexes created a roadmap for transition metals like copper, zinc and iron. K. J. Franz and group reported a copper(II) cage using nitrogen-rich bispyridylamide ligand (H\textsubscript{2}cage) to form [Cu(OH)\textsubscript{2}(cage)] (30) as first generation caged complex.139 On photo-irradiation, 30 release the copper as shown in Figure 9. The complete photo-cleavage occurs within 4 min exposure to UV light with 160% formation of hydroxyl radicals. As the binding affinity of H\textsubscript{2}cage for copper was not strong enough. The second generation ligands (imcage\textsubscript{31}, amcage\textsubscript{32}, 3arm-1 33, 3arm-3 34, macrocage 35, ZnCleave-1 36, 1Gcage 37) were synthesized.138,144 However, the binding affinities of Cu(II) were unfavorable for these ligands due to low chelating ability, electronic and steric effects. This ultimately led to development of a third-generation ligand (3Gcage). 3Gcage ((pyridine-2-carboxylic acid 1-{(2-nitro-phenyl)-2-{(pyridin-2-ylmethyl)-amino}-(propyl)-amide}) demonstrated good binding affinity for Cu(II) until the activation of UV light cleaves the ligand backbone (Figure 10). Cu3G cage (38) was found to be capable of extending the hydroxyl radicals to 300% on light activation causing non-apoptotic cell death.144,145 [Cu(Coucage)] (39)146 a Cu(II) complex of a tetradeionate coumarin derived ligand shows fluorescence quenching in live MCF7 cells. Exposure to UV light cleaves the bond causing fluorescence ‘turn-on’ and restoring the fluorescence upto 67%. This strategy can be used effectively to study copper trafficking at cellular level. S. C. Burdette and co-workers reported CuCleave-1 (40) which established binding and release of copper in +1 oxidation state on light-activation.147

Further, a set of Zn(II) caged complexes were synthesized in order to study the Zn(II) ion signalling.54,55 S. C. Burdette reported three Zncast cages (41, 42 and 43). Among these, 43 exhibits highest affinity for zinc.138 [Zn(CrownCaste)] (44) was the first in the series with crown ether receptor that has capability to bind Zn(II) ion.145 Upon photo-irradiation 44, nitrosobenzophenone was formed as a photo-product which has affinity for Zn(II). ZnCleave-1 (45), ZnCleave-2 (46) and ZnDiCast (47) were synthesized as the next generation Zn(II) caged complexes45,50,151,156 with 45 exhibiting greater binding affinity than others.149,150,157 [Zn(NTAdcage)] (48) was able to release Zn(II) ions upon photolysis in human Xenopus laevis oocytes. Intracellular distribution of [Zn(DPAdcage)]51 (49) on human dermal fibroblast (HDF) displayed enhanced fluorescence on activation of light.154 Iron is important in life processes and ferritin and transferrin controls iron storage and trafficking within the cells.158 Siderophores are naturally occurring unlockable cages with high affinity for Fe(III) ions. Marine siderophores called aquachelins are able to coordinate Fe(III) ion which in presence of UV light releases Fe(II) ions on cleavage of siderophore backbone.159,160 Fe(FerriCast)Cl\textsubscript{4} 50 is non-siderophore Fe(III) photocaged complex. 50 on photo-irradiation weakens the binding affinity and releases Fe(III) ions. Unfortunately, 50 decomposes in aqueous medium limiting its application in biological systems. S. Burdette and group synthesized argencast photocaged ligand with acyclic polythioether 3, 6,12,15-tetrathia-9-azaheptadecane receptor and 4, 5-dimethoxy-2-nitrobenzyl naphthyl-based nitrobenzyl group.162 Binding affinities of argencast-1 revealed interaction with Ag(I), Cu(I) and Hg(II) metal ions (51, 52 and 53). However, only Ag(I) was able to bind the argencast-1 in both organic and buffered environment. The photoreaction of argencast-1 converts the nitrobenzylidene into nitrosobenzophenone that participates in a resonance interaction with a metal-bound aniline nitrogen atom. The structural change following photolysis decreases availability of the nitrogen lone pair for Ag(I) coordination, but strong interactions between Ag(I) and the thioether ligands mitigates the release of metal ion. Along with argencast-1, argencast-2 (54) was shown to bind Ag(I) in both organic and aqueous media with similar quantum efficiency.

| 25. | 54, (4-(Bis(2-((2-(Ethylthio)ethyl)thio)ethyl)amino)phenyl)(3-nitronaphthalen-2-yl) methanol | 350nm | NR | 20 mM | HEPES buffer/ dioxane (1:1), pH 7.0 | NR | NR |
| 26. | 55, Pyridine-2-carboxylic acid {1-(2-nitro-phenyl)-2-[(pyridine-2-ylmethyl)-carboxamoyl]-ethyl-amide) platinum(II) complex | 320nm | NR | Phosphate buffer pH 7.4 | NR | 75% |

*NR= Not Reported
The dose-limiting toxicity and non-selectivity of cisplatin between normal and cancer cells is a major drawback for treatment of cancer.162 Delivery of drugs at the tumor site would minimize the toxicity to normal cells.164 To enhance the selectivity of platinum to the target, Pt(II) was incorporated in the tetradentate ligand bearing a photolabile group, [Pt(cage)] (55).165 This neutral platinum caged complex upon light activation converts to charged Pt(II) complex and induces photo-dependent cytotoxicity in MCF-7 cell line. Photophysical data and quantum efficiencies of all the photocaged complexes are compiled in table 1.

3. Para-nitroaromatic compounds as nitroreductase (NTR) active agents

The concept of ‘bioreductive therapy’ involves enzymatic reduction of non-toxic prodrug to reduced form which is more cytotoxic and therefore can be used effectively in cancer chemotherapy, solid tumor radiosensitization, and killing microorganisms.166,167 Nitroaromatic compounds such as nitrofurans, nitropyrenes, nitrobenzenes and several other nitroaryl compounds are known for their toxic, mutagenic and carcinogenic properties.168 As described earlier large tumors contain very less amount of oxygen that creates highly reducing environment known as hypoxia. Decrease in oxygen level leads to increase in reductive enzymes such as nitroreductase (NTR), quinone reductase and azoreductase.

Among these, NTR is directly related to the amount of intracellular levels of hypoxia.169–171 NTR is overexpressed in various tumors and plays an important role in tumor invasion, progression and angiogenesis.172 Therefore, NTR can be used as biomarker for evaluating the levels of hypoxia in tumor cells.171,172 NTR belongs to the family of flavin-containing enzymes which effectively reduces the nitro-aromatic groups to amines in presence electron donor such as nicotinamide adenine dinucleotide (NADH).173,174 The mechanism of flavin based enzyme is divided into two types as shown in Figure 11.175,176 Type I NTRs are oxygen insensitive and are capable of reducing nitro-aromatic compounds to hydroxylamine/amine in presence of O\textsubscript{2}. Type II NTRs are oxygen sensitive and reduced when oxygen is absent. Type I NTR is present in most of the bacteria like Escherichia coli,177,178 Helicobacter pylori,179 Vibrio fischeri180 including like ESKAPE family (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species)181–183 and also can be used to activate drugs for the treatment of cancer.184

The early work of Olive and Durand in 1980’s demonstrated that nitroaryl compounds are well recognized as hypoxia selective agents.185 Among the family of nitrofurans reported by them 3-((E)-2-(5-nitrofuran-2-yl)vinyl)-1, 2, 4-
oxadiazol-5-amine (56) was found to be highly responsive for hypoxic cells (Figure 12).187-190 Further, a number of nitroaryl compounds in which 1-(2, 3-dimethoxy-6-nitroanthracen-9-ylamino)-3-(diethylamino) propan-2-ol (57) and nitronaphthalimide (58) were shown to be non-fluorescent unless they get completely reduced to respective amines which fluoresce at high intensity (Figure 12). However in-vivo studies revealed that 57 did not accumulate to a greater extent in solid tumors.187 Later, Hodgkiss et al190 synthesized a series of 2-nitroimidazole compounds bearing fluorophores such as naphthalimide (59), coumarin (60), indolizine (61) and bicyclic bimane (62) as shown in the Figure 12. Bio-reduction of these moieties exhibited 5-17 fold increase in fluorescence when tested in V79 Chinese hamster cells. A series of 1, 8-naphthalimides with one or two 2-nitroimidazole moieties 63-66 displayed high fluorescence in V79 Chinese hamster hypoxic cells.191,192 Recently, X. Qian and his co-workers developed a first ratiometric fluorescent probe 67 (Figure 13a), capable of selective reduction in presence of NTR and NADH that changes its fluorescence from blue to green.170 Similar response was also observed in A549 cells in hypoxic condition. In addition, 67 was found to be least toxic making it a potential candidate for hypoxia imaging.

H. Ma and group122 designed lysosome-targeting ‘turn-on’ probe for detecting lysosomal nitroreductase and hypoxia. The probe 68 was incorporated with morpholine as a lysosome-targeting unit with 4-nitro-1, 8-naphthalimide as a fluorochrome and specific substrate for NTR. This probe displayed capability of visualizing the change in lysosomal NTR in live A549 cells under hypoxic condition. These studies revealed that the level of NTR in lysosomes is less than that in the cytoplasm. W. Lin et al193 reported probe 69 which was able to detect the NTR in endoplasmic reticulum (ER) in the cells. Here, the naphthalimide fluorophore was conjugated with methyl sulphonamide moiety. The presence of sulphonamide moiety is responsible for its selectivity to

Figure 12. Structures of nitro-aryl conjugates used as probes for detection of hypoxia.

Figure 13. (a) Proposed detection mechanism of fluorescent probe 67, Adapted from reference193 (b) Chemical structures of naphthalimide-based fluorescent probes, (c) Confocal microscopy images of probe 70 (0.5 μM) in noncancerous cells (NIH3T3) and various cancer cells (HeLa, A549, and HepG2). Adapted from reference194.
ER of live HeLa cells. This probe showed strong fluorescence at 543 nm with high selectivity, sensitivity and low cytotoxicity to cancer cells.

M. H. Lee et al. designed self-calibrating dual emission fluorescent probe 70 by conjugating coumarin with nitronaphthalimide moiety that was successsfully used in evaluating the NTR activity in noncancerous (NIH3T3), cancerous (HeLa, A549, and HepG2) and hypoxic cells. The emissions from coumarin (blue) and naphthalimide (green) moieties were considered as internal reference signal and NTR-responsive signal respectively. The green emission (505–600 nm) in HeLa, A549 and HepG2 cells was significantly enhanced compared to that of NIH3T3 cells whereas the blue emission (420–475 nm) was relatively unchanged (Figure 13c).

Next, S. Sun et al. reported a small molecular weight fluorescent probe 71 consisting of 1, 8-naphthalimide fluorophore. The probe 71 exhibited high sensitivity, selectivity and low toxicity with a lower detection limit (3.4 ng/mL). Further, incubation of 71 with HepG2 cells displayed intense emission which increased in a dose-dependent manner. This probe exhibited high selectivity and specificity towards NTR in bacteria (E. coli and S. aureus) and tumor cells (HL-7702, HepG-2 and MCF-7).

Q. Ye and group synthesized two-photon fluorescent probe 72 which was activated in presence of NTR. When NP69 cells were incubated in presence of 72, no fluorescence was detected under normoxic condition. However, gradual increase in the fluorescence signal was noted with decreasing oxygen concentration. Among various tumors, nasopharyngeal carcinoma (NPC) is the most common malignant tumor of the head and neck. 72 demonstrated better penetration through 100 µm thick NPC tissue with NTR detection. Further, the evaluated NTR activity revealed significant fluorescence enhancement in hypoxic HeLa cells. Probe 73 incorporates Nile Blue as a fluorophore for detection of NTR (Figure 14a) to improve the cell permeability of the probe. It was found to be more selective and sensitive for NTR with detection limit 180 ng/mL. It was non-toxic to A549 cells and exhibited high fluorescence in hypoxic condition (Figure 14b). Similarly, probe 74, was designed incorporating xanthene derivative, seminaphthorhodafluor (SNARF), with p-nitrobenzyl group attached to it through ether linkage. Reduction of p-nitrobenzyl moiety by NTR releases fluorescent SNARF acting as a fluorescent pH probe (Figure 15).

Nowadays, near infrared (NIR) fluorescence probes (700-1000nm) are gaining a lot of preclinical and clinical applications due to their high spatial resolution, portability and real time display. NIR probes can penetrate through deep organic tissues (<1–2 cm depth) and reduce damage to neighboring cells and tissue. Hence probes that emit in NIR regions were designed (Figure 16) by H. Nagasawa et al. comprising a tricarbocyanine moiety as NIR fluorophore and two 2-nitroimidazole moieties as exogenous hypoxia markers 75. The probe 75 when trapped in GPU-167 cancer cells gave fluorescence emission at 778 nm. Similarly, X. Zhang et al. designed another cyanine based fluorophore which was able to emit at 708 nm. Here the probe 76 was introduced with sulphonate groups to make enhance its water solubility for biological applications and to prevent its aggregation. F. Xu et al. synthesized probe 77 semi-cyanine fluorophore by linking p-nitrophenyl group via alkenyl linker. This probe was able to detect the normoxic and hypoxic conditions in A549 cells. Y. Sha and coworkers designed probe 78 by using 2, 3, 3-trimethyl-3H-benzof[l]indolinium and a p-nitrobenzyl moiety as NTR sensor. Further the NTR activity was studied on HeLa cells. The enhancement of fluorescence signal at 720 nm was noted in hypoxic condition. Similarly, H. Ma and group synthesized hemicyanine 79 from the unstable cyanine precursors. This probe possessed NIR spectroscopic feature with higher stability and was able to visualize the distribution of NTR in live zebrafish.

Another cyanine dye 80 was able to image the mammalian mitochondria in live A549 cells. To enhance the lipophilicity of cyanine probe, nitroaromatic moiety was introduced while designing the probe 81. This probe showed high specificity, sensitivity and rapid response to NTR over other biological analytes. This probe successfully monitored intracellular NTR in real-time by imaging live bacterial cells (Escherichia coli, Staphylococcus aureus, Klebsiella pneumoniae, methicillin-resistant Staphylococcus aureus (MRSA)). L. Chen et al. developed cyanine ‘turn-on’ probe 82 for quantitative detection of NTR in A549 cells and cisplatin resistant A549 (A549/DDP) xenograft nude mice. Later, J. Ge et al. reported first single fluorescent chemodosimeter, 83 that could simultaneously detect NTR in mitochondria and lysosome in live HeLa cells, containing aromatic azonia and benz[e]indol anion skeleton.
An ultrasensitive near infrared probe 87 by Y. Gu et al.,20 was able to detect in-vivo hypoxic condition in deep tissues by responding to NTR. The probe 87 showed fast response and prolonged imaging time in the tumor-bearing mice. Additionally, 87 demonstrated accurate and timely imaging of ischemic liver and ententitis sites in mice. The probe also showed good permeability while continuously imaging hypoxic cells (HepG2 cells).

A. Jayagophal et al developed two hypoxia sensitive probes 88 and 89 employing fluorescein as a reporting molecule. 89 exhibited 32-fold fluorescence enhancement in hypoxic retinal cells than normoxic retinal cells at concentration as low as 10 μM.210 Hypoxia-sensitive theranostic probe 90 comprising biotinylated rhodol in conjunction with p-nitrobenzoyl group via carbonate linker was reported by S. Bhuniya and coworkers211. This probe was stable within the biological range of pH 6-8. The probe 90 was selective towards NTR in liver microsomes and nemalode (Caenorhabditis elegans). M. P. Landry et al12 described highly sensitive NTR responsive three fluorescein probe designed with para-, meta- or ortho- nitrobenzyl groups. Among these, the probe with p-nitrobenzoyl group, 91 exhibited highest fluorescence quantum efficiency, extinction coefficient (around 490 nm) and water solubility under physiological conditions. Confocal fluorescence imaging and flow cytometry confirmed uptake of 142 by HepG-2, A549, and SKOV-3 with significant fluorescence enhancement under reducing conditions. In addition, 91 could distinguish different growth stages of tumors from the degree of hypoxia in tumor in mice models. D. Chang and group215 designed NTR-responsive fluorescent probes with o-methyl fluorescein and o-methyl rhodol fluorophores. Here the p-nitrobenzoyl moiety was linked with fluorophore via ether (92), carbonate (93), secondary amine (94), tertiary amine (95) and carbamate (96) linkers. Here the effect of linkages with fluorophore was studied using different spectroscopic techniques, temperature, pH stability, kinetics and concentration-dependency with NTR reactions. It was found that probes with ether and carbamate linkers presented better biocompatibility, high sensitivity (below 1 μM) and strong fluorescence response with NTR. From imaging studies, 92 and 96 were found to be putative hypoxia markers in live cells.

Along with fluorescein fluorophores researchers also developed rhodamine-based probes for detection of NTR (Figure 17). C. Wang and his group216 designed rhodamine probe 97 in one-step synthesis. Probe 97 showed 110-fold increase in fluorescence intensity when applied to monitor NTR production during E. coli growth. It was also able to visualize NTR production in malignant C-27 oral cancer cells under hypoxia. Similarly, G. Jaun et al215 developed rhodamine derived probes (R6G) by linking ortho-, meta- and para-nitrobenzyl moiety via hydrazide linker. Among them the probe with para-nitrobenzyl moiety 98 was able to detect NTR in physiological pH in HeLa cells with least toxicity and increase in fluorescence signal. H. Ma and group218 synthesized a newly developed fluorescent probe which was able to detect NTR and ATP (adenosine triphosphate) in hypoxic condition. The hybrid probe 99 was

Figure 15. Bio-reduction of non-fluorescent (74) to release pH responsive fluorophore SNARF. Adapted from reference 199.
designed by combining two fluorophores rhodamine and 1, 8 naphthalimide via diethylenetriamine linker. This probe was able to monitor NTR and ATP in hypoxic and normoxic conditions in HeLa cells. The detection limit of 99 for ATP was found to be 0.05 mM.

Figure 16. Cyanine-based dyes for NTR-responsive probes.
Figure 17. Fluorescein-based NTR responsive probes
L. D. Levis and group107 synthesized a series of four fluorogenic probes (100-103) based on 2', 7-difluorofluorescein (Oregon Green). These probes on alkylation with phenolic oxygen locks the molecule in non-fluorescent lactone form resulting in weak fluorescence signal. On testing these probes it was found that probe 103 with bis(2-nitro-N-methyl imidazolyl) moiety showed significant enzymatic activity in presence of endogenous intracellular reducing environment in mammalian cells. The k_{cat}/K_M value of 103 was found to be $8.1 \pm 0.8 \times 10^4 \text{M}^{-1} \text{s}^{-1}$. However, the probes with bis(5-nitrofuryl) (101) and bis(5-nitrothiophenyl) (102) Oregon Green showed very low reactivity with k_{cat}/K_M value $3.0 \pm 0.5 \times 10^2$ M$^{-1}$ s$^{-1}$ and 6×10^2 M$^{-1}$ s$^{-1}$ respectively. In contrast bis(nitrobenzyl) compound (100) was largely unreactive.

Along with fluorescein and rhodamine, BODIPY (boron dipyrromethene) based fluorophores are also being developed due to its excellent photostability, high quantum yield, and sharp absorption and emission bands (Figure 18). Due to high lipophilicity BODIPY probes tend to cross the cellular membrane and accumulate in subcellular membranes.218 BODIPY (4, 4-difluorouroro-4-bora-3a, 4adiaza-s-indacene) exhibits excellent photochemical stability, low biological toxicity, high quantum yield and high extinction coefficient.219-222 S. Shao et al developed the probe 104 where a probe incorporating BODIPY moiety attached to 5-nitrofuran as a substrate for NTR.223 Quaternized pyridine moiety was introduced for good water solubility.224-226 NTR-catalyzed reduction of 104 releases free 4-pyridinyl-substituted BODIPY giving 20-fold increase in fluorescence intensity. Further, this probe was able to track quantitatively the amount of NTR produced in E. coli in time-dependent manner. Another BODIPY based probe, 3-(4-hydroxy-3-nitro styryl)-BODIPY (105), involving a styryl substituent with \(-\text{OH}\) and \(-\text{NO}_2\) groups exhibited fluorescence ‘Turn-on’ under hypoxia.231 Using a water-soluble BODIPY-based chemodosimeter 106, Y. A. Volkova et al232 successfully imaged hypoxia status in human non-small-cell lung cancer A549 cells. Here the probe was incorporated with two N-alkylpiperidinyl groups for enhancing both its water solubility and cellular uptake.

Another probe meso-ester-1, 3, 5, 7-tetramethyl- BODIPY (107), employing BODIPY was developed by Y. Kim et al.233 Reduction of 107 in presence of NTR produced meso-carboxylate-BODIPY with ~220-fold fluorescence enhancement. C. Zhao and group reported mitochondria-targeted fluorophore probe appended with p-nitrobenzyl thioether and triphenylphosphine functionalities to the parent BODIPY.108 234 In presence of enzyme nitroreductase, 108 was able to undergo 1, 6-elimination reaction that releases fluorophore emitting in the near infrared region.

This probe demonstrated selective detection of nitroreductase in mitochondria.234 Another BODIPY-based NTR triggered molecule emitting in near infrared region was designed by Jon athan L. Sessler and his coworkers.235 The molecule 109 was conjugated with folate due to which it is easily taken up folate receptor-positive CT26 cancer cells. This makes 109 a useful cancer-targeting agent.
A novel set of nitrofuranyl calanolides conjugated with trehalose (110-114), for detection of NTR Rv2466c in *Mycobacterium tuberculosis* (*Mtb*) (Figure 19a) was designed by G. Liu and group. Determining the location of *Mtb* in host cells is of great importance for understanding how the pathogens survive and protect themselves under the host pressure. Nitrofuranyl calanolides were found to kill both replicating-*Mtb* (R-*Mtb*) and nonreplicating-*Mtb* (NR-*Mtb*). Among the set of nitrofuranyl calanolides, probe 114 was able to rapidly detect single cells of *Mtb* under different states via the Rv2466c mediated reductive mechanism. Investigations on different bacteria, viz. *B. subtilis, E. coli, E. faecalis, Listeria monocytogenes, S. aureus* including *M. smegmatis* and heat killed *M. smegmatis* revealed that probe 114 selectively detected live *M. smegmatis* (Figure 19b). Additionally, the probe 114 could detect *Mtb* within macrophages and in sputum samples from TB patients. The toxicity of 116 may also arise because of its interaction with the DNA. First lanthanide-based ‘turn-on’ luminescent probe 117, reported by Marc Nazaré contains Tb(III) with sensitizing carbostyril antenna that results in energy transfer to the Tb(III) after coming in contact with NTR. Laporte-forbidden f-f transitions of Tb(III) results in low extinction coefficient and effective excitation, thus enabling the energy transfer of the lanthanide from organic chromophore. This probe was capable of selectively sensing live bacteria which are highly multi-resistant pathogens of the ESKAPE family and are responsible for majority hospital infections. Similarly, K. S. Hong and group designed lanthanide-based NTR probe 118 by encapsulating europium in DOTA bearing a 3-nitropthalimide group. This probe was able to detect the hypoxia in cellular levels via optical imaging of live *E. coli* cells, as well as in *vitro* CEST (chemical exchange saturation transfer) MRI studies involving CT26 cancer cells. 118 was found to be appropriate for *in-vivo* monitoring of hypoxic regions in a CT26 mouse xenograft via the production of both an NTR-specific luminescence signal and CEST MRI imaging due to Intramolecular charge transfer (ICT) from the resulting free NH₂ functionality to Eu(III) ion. The photophysical and enzymatic rate values of all the fluorogenic probes and detection limits are given in the table 2.

Figure 19. (a) Nitrofuranyl calanolides conjugates for detection of NTR in mycobacteria, (b) Overlap imaging (bright-field and cyan fluorescence) of *Bacillus subtilis* (Bs), *Escherichia coli* (Ec), *Enterococcus faecalis* (Ef), *Listeria monocytogenes* (Lm), *Staphylococcus aureus* (Sa), *Mycobacterium smegmatis* (*M. smeg*), and heat-killed *Mycobacterium smegmatis* (killed-*M. smeg*) cells incubated with 100 µM 124 for 1 h.
4. Conclusions

In this review, the development of non-platinum complexes as antiproliferative agents to stimulus-responsive molecules for targeted therapy is elaborated. The review gives an overview of molecules which can be used in future as anticancer agents with small modifications. It is interesting to learn how changes in cellular pH or amount of oxygen can modulate emission properties that can be used to develop sensing of tumor cell activity.

5. Acknowledgements

DUK acknowledges Savitribai Phule Pune University (SPPU) for fellowship and AAK acknowledges SPPU-RUSA-II funding (CBS:Th2.2), for financial support.

Table 2 Photophysical and enzymatic reaction rate values of NTR-responsive molecules.

<table>
<thead>
<tr>
<th>Sr. No</th>
<th>Compound, chemical name</th>
<th>(\lambda_{	ext{ex/em}}) solvent</th>
<th>(K_m)</th>
<th>(V_{\text{max}})</th>
<th>Detection limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>67, 2-(2-(6-nitro-1,3-dioxo-1H-benzo[de]isoquinolin-2(3H)-yl) ethoxy) ethyl acetate</td>
<td>410/550nm, 10mM PBS buffer (1% DMSO)</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>2</td>
<td>68, 2-(2-morpholinoethyl)-6-nitro-1H-benzo[de]isoquinoline-1,3(2H)-dione</td>
<td>425/543nm, PBS buffer</td>
<td>45.6 (\mu)M</td>
<td>0.062 (\mu)M/s</td>
<td>2.2 ng/mL</td>
</tr>
<tr>
<td>3</td>
<td>69, 4-methyl-N-(2-(6-nitro-1,3-dioxo-1H-benzo[de]isoquinolin-2(3H)-yl)ethyl) benzenesulfonamide</td>
<td>440/543nm, 10mM PBS buffer (pH 7.4, 5% DMSO)</td>
<td>NR</td>
<td>NR</td>
<td>36 ng/mL</td>
</tr>
<tr>
<td>4</td>
<td>70, 2-(2-((1-(6-isopropyl-3-methylene-3,4-dihydropthalen-2-yl) vinyl) amino) ethyl)-6-nitro-1H-benzo[de]isoquinoline-1,3(2H)-dione</td>
<td>430/550nm, 10mM PBS (pH 7.4, 10% DMSO)</td>
<td>23.4 (\mu)M</td>
<td>3.42 (\mu)M/s</td>
<td>0.733 ng/mL</td>
</tr>
<tr>
<td>5</td>
<td>71, 2-butyl-6-(4-nitrobenzoyl)oxy)-1H-benzo[de]isoquinoline-1,3(2H)-dione</td>
<td>420/489nm, PBS buffer DMSO/H2O (v/v 1:19, pH 7.0)</td>
<td>NR</td>
<td>NR</td>
<td>3.4 ng/mL</td>
</tr>
<tr>
<td>6</td>
<td>72, 4-nitrobenzyl 4-(6-((4-nitrobenzoyl)oxy)-1,3-dioxo-1H-benzo[de]isoquinolin-2(3H)-yl)butanoate</td>
<td>450/560nm, 10mM PBS buffer, (v/v DMSO pH 7.4)</td>
<td>53.19 (\mu)M</td>
<td>0.070 (\mu)M/s</td>
<td>2.3 ng/mL</td>
</tr>
<tr>
<td>7</td>
<td>73, 3-methoxy-N-(3-methoxy-3-oxopropyl)-N-(5-((4-nitrobenzoyloxy) carbonylamino)-9H-benzo[a]phenoxazin-9-ylidene)-3-oxopropan-1-aminium</td>
<td>658/580nm, 10mM PBS buffer (pH 7.4, 1% DMSO)</td>
<td>NR</td>
<td>NR</td>
<td>180 ng/mL</td>
</tr>
<tr>
<td>8</td>
<td>74, 10-(dimethylamino)-3-[(4-nitrophenyl)ethoxy]spiro-[7H benzo[c] xanthene-7, 10 (30H)-isobenzofuran]-30-one</td>
<td>534/584nm, 10mM acetate (buffer pH 5.0)</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>9</td>
<td>75, potassium 2-({(1E,3E,5E)-7-((E)-1-(1-(1-hydroxy-2-(2-nitro-1H-imidazol-1-yl)ethyl)piperidin-4-yl)-5-oxoheptyl)-3,3-dimethyl-5-sulfonatoindolin-2-ylidene)hepta-1,3,5-trien-1-yl)-1-((1-(1-hydroxy-2-(2-nitro-1H-imidazol-1-yl)ethyl)piperidin-4-yl)methyl)amino)-5-oxopentyl)-3,3-dimethyl-3H-indol-</td>
<td>753/778nm, MeOH</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>No.</td>
<td>Compound</td>
<td>Absorption wavelengths</td>
<td>Concentration</td>
<td>Emission rate</td>
<td>Unit</td>
</tr>
<tr>
<td>-----</td>
<td>---</td>
<td>------------------------</td>
<td>---------------</td>
<td>---------------</td>
<td>------</td>
</tr>
<tr>
<td>10</td>
<td>1-ium-5-sulfonate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>(E)-1-ethyl-3,3-dimethyl-2-(3-nitrostyryl)-3H-indol-1-ium</td>
<td>490/556 nm</td>
<td>NR</td>
<td>NR</td>
<td>40 ng/mL</td>
</tr>
<tr>
<td>12</td>
<td>(E)-1-ethyl-3,3-dimethyl-2-(2-(6-(4-nitrobenzyl)oxy)-1H-xanthen-4-yl)vinyl-4-(4-nitrobenzyl oxy)styryl-3,3-dimethyl-3H-indol-1-ium</td>
<td>670/705 nm</td>
<td>32.2 μM</td>
<td>3.7 μM/s</td>
<td>14 ng/mL</td>
</tr>
<tr>
<td>13</td>
<td>(E)-1-ethyl-3,3-dimethyl-2-(2-(6-(4-nitrobenzyl)oxy)-1H-xanthen-4-yl)vinyl-4-(4-nitrobenzyl oxy)styryl-3,3-dimethyl-3H-indol-1-ium</td>
<td>702/703 nm</td>
<td>46.82 μM</td>
<td>0.13 μM/s</td>
<td>26 ng/mL</td>
</tr>
<tr>
<td>14</td>
<td>(E)-10-(2-(1,1-dimethyl-3-propyl-1H-benzo[e]indol-3-ium-2-yl)vinyl)-5-(5-nitrofuran-2-yl methoxy)-8, 9-dihydro-7H-pyrido[1, 2-a]quinazolin-5-ium-3-olate</td>
<td>565/655 nm</td>
<td>NR</td>
<td>NR</td>
<td>3.2 ng/mL</td>
</tr>
<tr>
<td>15</td>
<td>2-(2-(Z)-3-(2-(Z)-1-(7-(((3-((3-amino-6-(aminomethyl)-4,5-dihydroxytetrahydro-2H-pyran-2-yl)oxy)-5-(3,5-diamino-2-(3-amino-6-(aminomethyl)-4,5-dihydroxycyclohexyloxoy)-4-hydroxytetrahydrofuran-2-yl)methyl)amino)-7-oxoheptyl)-3,3-dimethylindolin-2-ylidene)ethylidene)-2-((4-nitrophenyl)sulfonyl)oxy)cyclohex-1-en-1-ylvinyl)-1,3,3-trimethyl-3H-indol-1-ium</td>
<td>700/801 nm</td>
<td>11.88 μM</td>
<td>0.178 μM/s</td>
<td>0.67 ng/mL</td>
</tr>
<tr>
<td>16</td>
<td>(E)-1-benzyl-3,3-dimethyl-2-(2-(6-((4-nitrobenzyl)oxy)-2,3-dihydro-1H-xanthen-3-yl)vinyl)benzo[d]thiazol-3-ium iodide</td>
<td>550/570 nm</td>
<td>0.1271 μM</td>
<td>0.2872 μM/s</td>
<td>0.117 μg/mL</td>
</tr>
<tr>
<td>17</td>
<td>3-methyl-4-(6-((4-nitrobenzyl)oxy)-3-oxo-3H-xanthen-9-yl)benzoic acid</td>
<td>490/515 nm</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>

https://doi.org/10.53023/p.rasayan-20230606
<table>
<thead>
<tr>
<th>No.</th>
<th>Compound Description</th>
<th>Wavelengths</th>
<th>Buffer/Conditions</th>
<th>IC50/IC80</th>
<th>α-Cell/IC80</th>
<th>IC50/IC80</th>
</tr>
</thead>
<tbody>
<tr>
<td>26.</td>
<td>3'-methoxy-6'-(4-nitrobenzyl)oxy)-3H-spiro[isobenzofuran-1,9'-xanthen]-3-one</td>
<td>454/520nm, 10mM PBS buffer (pH 7.4)</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td></td>
</tr>
<tr>
<td>27.</td>
<td>3'-methoxy-3-oxo-3H-spiro[isobenzofuran-1,9'-xanthen]-6'-yl (4-nitrobenzyl) carbonate</td>
<td>454/520nm, 10mM PBS buffer (pH 7.4)</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td></td>
</tr>
<tr>
<td>28.</td>
<td>3'-methoxy-6'-(4-nitrobenzyl)amine)-3H-spiro[isobenzofuran-1,9'-xanthen]-3-one</td>
<td>476/516nm, 10mM PBS buffer (pH 7.4)</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td></td>
</tr>
<tr>
<td>29.</td>
<td>3'-methoxy-6'-(methyl(4-nitrobenzyl)amino)-3H-spiro[isobenzofuran-1,9'-xanthen]-3-one</td>
<td>490/536nm, 10mM PBS buffer (pH 7.4)</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td></td>
</tr>
<tr>
<td>30.</td>
<td>4-nitrobenzyl (3'-methoxy-3-oxo-3H-spiro[isobenzofuran-1,9'-xanthen]-6'-yl)carbamate</td>
<td>476/516nm, 10mM PBS buffer (pH 7.4)</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td></td>
</tr>
<tr>
<td>31.</td>
<td>3'-(diethylamino)-6'-nitro-3H-spiro[isobenzofuran-1,9'-xanthen]-3-one</td>
<td>500/560nm, 10mM PBS buffer (pH 7.4)</td>
<td>NR</td>
<td>NR</td>
<td>0.6 ng/mL</td>
<td></td>
</tr>
<tr>
<td>32.</td>
<td>3',6'-bis(ethylamino)-2'-methyl-2-((4-nitrobenzylidene)amino)spiro[isoindoline-1,9'-xanthen]-3-one</td>
<td>500/557nm, PBS buffer (pH 7.0)</td>
<td>NR</td>
<td>NR</td>
<td>14.3 ng/mL</td>
<td></td>
</tr>
<tr>
<td>33.</td>
<td>3',6'-bis(diethylamino)-2-(2-((2-(6-nitro-1H-benzo[de]isoquinolin-2(3H)-yl)ethyl) amino)ethyspiro[isoindoline-1,9'-xanthen]-3-one</td>
<td>540/580nm, 10 mM Tris buffer (pH 7.4)</td>
<td>NR</td>
<td>NR</td>
<td>120 ng/mL</td>
<td></td>
</tr>
<tr>
<td>34.</td>
<td>2',7'-Difluoro-3',6'-bis((4-nitrobenzyl)oxy)-3H-spiro[isobenzofuran-1,9'-xanthen]-3-one</td>
<td>457–487nm/503–538nm</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td></td>
</tr>
<tr>
<td>35.</td>
<td>2',7'-Difluoro-3',6'-bis((5-nitrofuran-2-yl)methoxy)-3H-spiro[isobenzofuran-1,9'-xanthen]-3-one</td>
<td>457–487nm/503–538nm</td>
<td>NR</td>
<td>NR</td>
<td>1.1 µM</td>
<td></td>
</tr>
<tr>
<td>36.</td>
<td>2',7'-Difluoro-3',6'-bis((1-methyl-2-nitro-1H-imidazol-5-yl)methoxy)-3H-spiro[isobenzofuran-1,9'-xanthen]-3-one</td>
<td>457–487nm/503–538nm</td>
<td>NR</td>
<td>NR</td>
<td>1.6 µM</td>
<td></td>
</tr>
<tr>
<td>37.</td>
<td>4-(5,5-difluoro-1,3,7,9-tetramethyl-5H-4,4-dipyrrolo[1,2-c:2',1'-f][1,3,2]diazaborinin-10-yl)phenyl(4-nitrobenzyl) carbonate</td>
<td>659/686nm, water (10% DMSO)</td>
<td>NR</td>
<td>NR</td>
<td>9.6 ng/mL</td>
<td></td>
</tr>
<tr>
<td>38.</td>
<td>4-(2,8-diethyl-5,5-difluoro-1,9-dimethyl-3,7-bis((E)-4-(3-(4-(piperidin-1-yl)butoxy)styryl)-5H-4,4-dipyrrolo[1,2-c,2',1'-f][1,3,2]diazaborinin-10-yl)phenyl (4-nitrobenzyl) carbonate</td>
<td>659/686nm, water (10% DMSO)</td>
<td>NR</td>
<td>NR</td>
<td>9.6 ng/mL</td>
<td></td>
</tr>
<tr>
<td>39.</td>
<td>4-(2-(2-cyano-3-(6-ethyl-4,4-difluoro-5,7-dimethyl-3-((4-nitrobenzyl)thio)-8-phenyl-3a,4-dihydro-4H-dicyclopentaborinin-2-y)acrylamido)ethyl)triphenyl phosphonium</td>
<td>615/715nm, 50mM Tris-HCl buffer (pH 7.4, 1% DMSO)</td>
<td>0.57 µM</td>
<td>0.011 µM/s</td>
<td>16.8 ng/mL</td>
<td></td>
</tr>
<tr>
<td>40.</td>
<td>2',7'-Difluoro-3',6'-bis((2-amino-4-oxo-3,4-dihydropteridin-7-yl)methylamino)benzoyl)-N'-((2-3a,4-dihydro-4H-dicyclopentaborinin-2-y)acrylamido)ethyl</td>
<td>685/730nm, 10mM PBS buffer</td>
<td>NR</td>
<td>NR</td>
<td>1.52 ng/mL</td>
<td></td>
</tr>
</tbody>
</table>
7-(4-((4-nitrobenzyl)oxy)phenyl)-1,9-diphenyl-5H-5,6,7,8,9,10-hexahydro-5-3-(3,6-dipyrrolo[1, 2-c', 2'-f][1, 3, 2]diazaborinin-3-ylphenoxyl) acetamido) ethylglutamine (pH7.4)

44. **14.** 8-nitro-4-propyl-6-((1-(3-((1R,2R,4R)-3,4,5,6,7,8,9,10-octahydro-2H-furo[2,3-h][1,3,2]diazaborinin-4-yl)oxy)-2,2',2''-(10-(2-((4-nitrobenzyl)oxy)-2-oxoethyl)-1,4,7,10-tetraazaacyclododecane-1,4,7-triy)triatalacetic acid europium(III) complex

NR NR NR 24 ng/mL

45. **15.** 2,2,2''-(10-(2-((4-nitrobenzyl)oxy)-2-oxoethyl)-1,4,7,10-tetraazaacyclododecane-1,4,7-triy)triacetic acid, gadolinium(III) complex

46. **16.** ruthenium(II) bis(4,7-diphenyl-1,10-phenanthroline) (4-((3-(2-nitro-1H-imidazol-1-yl)propyl)-2,2'-bipyridine

47. **17.** 2,2,2''-(10-(2-((4-ethoxy-2-(ethoxy carbonyl)-3-oxoprop-1-en-1-yl)-3-(((4-nitrobenzyl)oxy) carbonyl) amino)phenyl)amino-2-oxoethyl)-1,4,7,10 tetraazaacyclododecane-1,4,7-triy)triacetic acid terbium(III) complex

18. **18.** 2,2,2''-(10-(2-((4-amino-1,3-dioxoisindolin-2-yl)ethyl)-1,4,7,10-tetraazaacyclododecane-1,4,7-triy)triacetic acid europium(III) complex

NR NR NR 1.78 ng/mL

*NR= Not Reported

6. Notes and References

Prayogik Rasayan

https://doi.org/10.53023/p.rasayan-20230606

50. Choy, H.; Park, C.; Yao, M. Current Status and Future
64. Mjos, K. D.; Orvig, C. Metalloids in Medicinal
Prayogik Rasayan 2023, 07, 29-60

92. Kwong, W. L.; Lok, C. N.; Tse, C. W.; Wong, E. L. M.; Che, C. M. Anti-Cancer Iron(II) Complexes of Pentadentate N-Donor Ligands: Cytotoxicity,
Prayogik Rasayan

Ye, C. I.; Ooi, K. K.; Tiekink, E. R. T. Gold-Based

Prayogik Rasayan

7. About the author(s)
Dr. Deepti U. Kirtani received her Ph.D. in 2022 under the supervision of Dr. Anupa A. Kumbhar from Department of Chemistry, Savitribai Phule Pune University, Pune. Her dissertation ‘Investigating the stimulus responsive uncaging of iron(III), copper(II) and platinum(II) complexes on antiproliferative activity’ was focused on design and synthesis of fluorophore-tagged stimulus-responsive (UV light, pH and enzyme) metal complexes, explore their uncaging mechanisms and antiproliferative activity.

Dr. Anupa A. Kumbhar is an Associate Professor at the Department of Chemistry, Savitribai Phule Pune University (SPPU), Pune. Her group at SPPU is engaged in developing metal-based antibacterial agents, fluorophore-labelled metal complexes for bioimaging, and sensors for environmental and biosensing applications.

Article Note: A collection of invited papers based on Award Lecture presentations in the International webinar Science Beyond Boundary: Invention, Discovery, Innovation and Society ‘Rasyan 14’ held online on August 20, 2022.